Cutting Forces in Hard Turning Comprising Tool Flank Wear and Its Implication for the Friction between Tool and Workpiece

نویسندگان

  • Milan Milutinović
  • Ljubodrag Tanović
چکیده

Original scientific paper In this paper, the orthogonal cutting force model is proposed comprising forces due to flank wear in addition to the forces for chip formation during the hard turning of round bar made of steel 60WCrV7 hardened at 55+2HRc. Cutting force model includes two tool conditions: perfectly sharp tool with VBB = 0 and tool with maximum permissible flank wear VBBmax. Based on cutting force measurements and established force relationships between the wear forces and forces for chip formation, it is possible to analytically predict the friction coefficient between the tool and workpiece. From pure geometrical relationships between forces the equation for the friction angle between the tool flank and workpiece can be derived. The friction coefficient at the toolworkpiece interface was measured using block-on-the-disc tribometer. Predictions of the friction coefficient by means of established mathematical model are compared with experimental results, and overall a good agreement is observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machinability Investigation of Inconel 657 in High-speed Turning

A high strength nickel chromium alloy (50Cr-50Ni-Nb alloy), commonly referred to as IN-657, is specifically used for components in furnaces which are fired by low grade fuel oils containing high levels of vanadium, sodium and sulphur. The purpose of this study is to experimentally investigatethe effect of machining parameters on machinability in turning of Inconel 657. The considered parameters...

متن کامل

Machinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling

17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...

متن کامل

Machinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling

17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...

متن کامل

SIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES

On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...

متن کامل

Machinability Investigation of Inconel 657 in High-speed Turning

A high strength nickel chromium alloy (50Cr-50Ni-Nb alloy), commonly referred to as IN-657, is specifically used for components in furnaces which are fired by low grade fuel oils containing high levels of vanadium, sodium and sulphur. The purpose of this study is to experimentally investigatethe effect of machining parameters on machinability in turning of Inconel 657. The considered parameters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016